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ABSTRACT KEYWORDS

The problem of urban crashes brings huge challenges and urban traffic safety; space-
threats to local police and governments, especially in many time cube model;
cities in developing countries such as China. To reduce the  Microzone-level safety;
frequency and severity of urban crashes, the local government high-risk crash spots;
. . . X ; . spatiotemporal evolu-
in China has gradually taken interest in conducting detailed tion patterns
actions of traffic safety improvement at the microzone-level.

Therefore, the primary goal of this study is to try a new

method in spatiotemporal data mining techniques, the space-

time cube method, to find high-risk crash spots at the spatio-

temporal level and to obtain their spatiotemporal evolution

patterns. The cumulative frequency curve method was per-

formed to identify high-risk crash spots, and the contributory

factors of forming these spots were analyzed by the latent

class analysis method. The results showed that: (1) key param-

eters’ selection is crucial in the space-time cube construction;

(2) the exit ramp gore point in interchanges, intersections,

and entrances of neighborhoods were prone to have many

high-risk crash spots at the spatiotemporal scale; and (3) loca-

tions with consecutive, persistent, and sporadic hotspots pat-

terns need different risk monitoring strategies and traffic

safety improvement. The feasibility and advantages of the

space-time cube method in hotspots identification at the

microzone-level were confirmed.

1. Introduction

The problem of urban crashes has received an increasing amount of atten-
tion from both governments and transportation departments over the last
two decades, especially in developing countries like China. In Chinese cit-
ies, crashes happen frequently in urban road networks and the number of
casualties is relatively high, resulting in a large number of lives and prop-
erty loss. In 2017, crashes in urban areas of China caused about 16,000
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deaths, 52,500 injuries and 300 million yuan in direct property loss (Ministry
of Public Security of People’s Republic of China, 2018). Because of the com-
plex nature of urban traffic management, various types of vehicles, harmful
driving behaviors, and other factors, the problem of urban crashes remains
unsolved for most cities in China. Therefore, local governments in China grad-
ually promote traffic safety improvement programs at the microzone-level,
such as subdistricts, because regional traffic safety plans usually require a great
deal of human and financial resources yet achieved unsatisfactory results.
Consequently, traffic safety at the microzone-level in big cities is of great
importance and huge interest of local governments in China. The microzone-
level refers to one small part of the road network within a region (often urban
areas). In previous studies, these networks are often called directed linear net-
works (Briz-Reddn, Martinez-Ruiz, & Montes, 2019a; Briz-Reddn, Martinez-
Ruiz, & Montes, 2019b). In China, the administrative division of areas refers
to these microzone-levels as sub-districts.

As a necessary and typical part of road safety programs, hotspots identifi-
cation technique (namely black spots, hazard sites, high-risk sites, crash-
prone sites, et al.) is widely applied in highways and urban roads. Since the
first publication of the Highway Safety Manual (HSM) (AASHTO, 2010), the
Empirical Bayes (EB) technique was recommended as one of the state-of-art
methods in the network screening process (Elvik, 2008). Montella (2010)
believed that the EB method is the most consistent and reliable method
when it was compared to other hotspots identification methods with four
evaluation criteria. Some limitations of the EB method have been pointed
out, which has led to the Full Bayesian (FB) method development (Huang,
Chin, & Haque, 2009; Lan & Persaud, 2011). The quality control method
and the cumulative frequency curve method were also applied in black spots
management (Yang & Li, 2012; Nguyen, Taneerananon, & Luathep, 2015).
Nevertheless, conventional hotspots identification approaches sometimes
meet troubles in collecting accurate traffic volume data, especially in some
access roads or local streets in the urban road networks. Limited crash data,
such as those of subdistrict area, also will yield unsatisfactory results of EB
methods due to the poor predictive performance of the crash prediction
model. To solve these deficiencies in conventional models, Getis-Ord Gi*
hotspots analysis, kernel density estimation and its improved version net-
work-based kernel density estimation became popular and were highly
acknowledged by many scholars in the last few years (Xie & Yan, 2013;
Benedek, Ciobanu, & Man, 2016; Jia, Khadka, & Kim, 2018; Lee & Khattak,
2019). These methods yield reasonable identification results, and they can
identify hotspots microscopically. Ziakopoulos and Yannis (2020) pointed
out that micro-level road safety and event analysis with spatial considerations
appear to be inadequate in the last decades. Therefore, hotspots identification
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methods and crash modeling still need to be further investigated at the small
scale, including the microzone-level.

The majority of current literature on hotspots identification mostly
focuses on spatial or temporal concentration of crash data separately (Plug,
Xia, & Caulfield, 2011; Yu, Liu, Chen, & Wang, 2014; Benedek et al., 2016).
Nevertheless, the identification methods of crash hotspots in space and
time scale simultaneously showed huge potential in the near future
(Youngok, Nahye, Serin, & Peng, 2018). Based on the spatial statistic the-
ory, the popularity and prosperity of spatiotemporal data mining techni-
ques were witnessed in many research fields, such as climatology,
environmental health and real estate marketing (Banerjee, Carlin, &
Gelfand, 2004; Cressie & Wikle, 2011). The space-time cube method, an
emerging spatiotemporal data mining method, was proven to be a useful
tool for us to analyze space-time closeness of events and spatiotemporal
evolution patterns. It is said that the space-time cube approach offers good
visual opportunities to study the relationship between time, space and add-
itional variables (Kraak, 2003). Gatalsky, Andrienko, and Andrienko (2004)
implemented the space-time cube method to explore the spatiotemporal
patterns of earthquakes in the Marmara region. Cheng, Zhang, Peng, Yang,
and Lu (2020) introduced the space-time cube model to analyze the spatio-
temporal evolution mechanism of pollutant emissions. Because crash data
essentially has spatial and temporal attributes, crash data belongs to spatio-
temporal data. Therefore, the space-time cube approach can provide more
insights and new understandings of dynamic spatiotemporal evolution rules
about crashes.

Moreover, some studies showed that the methods used for identifying
crash hotspots can be improved by embracing different perspectives, such
as crash risks, collision types and vehicle types (Ferreira & Couto, 2015;
Briz-Redon et al., 2019b). Crash risks can be understood as a function of
crash frequency (or probability of crash occurrence) and crash severity
(crash consequences) (Stipancic, Miranda-Moreno, Saunier, & Labbe, 2019;
Park & Oh, 2019). Considering that the crash risk was evaluated by the
sum of different severity levels of all crashes (Bao, Liu, & Ukkusuri, 2019),
we define the crash risk calculated by the sum of equivalent property dam-
age-only crashes (EPDO). Weights of different crash severity (fatal, injury,
property damage-only) are determined by the quotient of the direct eco-
nomic cost of each severity level crashes divided by the direct economic
cost of property damage-only (PDO) crashes according to China Statistical
Yearbook (National Bureau of Statistics of China, 2019). In this study, the
weights of PDO, injury and fatal crashes are 1, 3 and 10, respectively. It is
noted that the weights of fatal crashes and injury crashes maybe much
smaller than the actual situation in China because the direct economic
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Figure 1. The overall technical route of this study (Song et al., 2020).

costs do not include the medical costs and indirect economic costs of
every crash.

The main goal of this study is exploring a new approach of identifying
high-risk crash spots in the urban road network and analyzing their spatio-
temporal evolution patterns at the microzone-level. The overall technical
route of this study is shown as Figure 1. Two important questions of this
study are intended to answer: (1) if small size of grid structure applicable in
urban roadways at the microzone-level? (2) how is the performance of
space-time cube method in microscopic hotspots identification and spatio-
temporal evolution analysis? This study contributes to the present knowledge
in the following three ways: first, rarely studied methods of selecting appro-
priate parameters for the space-time cube method based on crash datasets
were discussed and their effects on results were also investigated; second, the
cumulative frequency curve method was applied to identify spatiotemporal
high-risk crash spots and the latent class clustering technique was performed
to find the contributory factors of these spots; and third, the results of spa-
tiotemporal evolution patterns provide new understandings of urban crash
risks, which is believed to be beneficial for conducting effective risk monitor-
ing strategies and safety improvement actions in these locations.

2. Data
2.1. Road network structure

The road network in Chinese cities is quite different from other cities
because there are many interchanges in the central urban area to alleviate
traffic congestion problems. Also, the spacing between interchanges and inter-
sections is short. For example, the smallest spacing between the interchange
and the intersection is 75 meters in this study area. Therefore, the road net-
work in this study differs from urban road networks in previous studies
(Huang et al., 2016; Briz-Redoén et al., 2019a; Briz-Redon et al., 2019b). There
are 7 interchanges, 117 intersections, and 766 segments in the Huafu
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subdistrict of Shenzhen city in China. The complex geometrical shape of
interchanges and intersections was simplified by using polygons based on the
satellite image. Several factors that could be associated with crashes are con-
sidered at the road segment level. These mainly include road classes, number
of lanes, and cross-section forms. The road class was divided into six types,
namely expressways, arterial roads, sub-arterial roads, access roads, local
streets and others (e.g., auxiliary roads, ramps, under-bridge roads). There are
36 expressway segments, 121 arterial road segments, 49 sub-arterial road seg-
ments, 168 access road segments, and 216 local streets in this study area.

2.2. Crash dataset

A total of 1299 crashes recorded by the Local Traffic Police Department of
Shenzhen (China) from 2014 to 2018 in the Huafu subdistrict was used as
a case study. Each of these crashes was geocoded from the address informa-
tion collected by the police officers. In this work, crashes have been pro-
jected into a road network structure in the Arc GIS software (Esri, 2016)
and the crash points on the urban roads correspond exactly to the actual
location of crashes happening. Several informative attributes were available
for each crash point, such as date and time of crashes, types of crashes,
types of vehicles involved, crash severity, number of people that got
injured, age and gender of drivers.

2.3. Traffic flow datasets

AADT is not available for every road segment in the Huafu subdistrict,
such as some local streets, but other types of road class that can be
obtained from the local transportation department. Hence, a 5-level cat-
egorical covariate was defined to denote the traffic volume in every road,
which has already been tested by previous authors (Hao and Daniel, 2014;
Briz-Redon et al., 2019a). These five categories of traffic flow are as follows:
AADT < 7,000 (Level 1), 7,000 < AADT < 16,000 (Level 2), 16,000 <
AADT < 25,000 (Level 3), 25,000 < AADT < 55,000 (Level 4) and
AADT > 55,000 (Level 5). By field observation of traffic flows, all the traf-
fic flow of local streets in this subdistrict belongs to level 1 of AADT, so all
the traffic flow data is available in this study.

3. Methodology
3.1. Knox test for spatiotemporal interaction

Before using the space-time cube method, the Knox test is recommended
for verifying whether events are close to each other within a certain time
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and space range. In the Knox test, critical distances in space () and time
(t) have to be specified to yield a categorization of the distances into
“close” or “not close” (Knox & Bartlett, 1964). The test statistic is defined
as the number of event pairs that are close both in space and time accord-
ing to these distance thresholds:

TKnox:%i;<<dfj < 8)H<d§j < r) (1)
= 7

If the point pattern exhibits clustering at the predefined spatiotemporal
scales, the observed number of close pairs will be larger than the expected
number under the null hypothesis of no space-time interaction (Meyer,
Warnke, Rossler, & Held, 2016). By applying the Knox test for different
time step intervals and distance intervals, the suitable range of time step
intervals and distance intervals of space-time cubes can be found as strong
spatiotemporal interactions exist.

3.2. Space-time cube model and emerging hot spot analysis

In 1970, Sweden geographer Torsten Hagertrand introduced a new three-
dimensional diagram, the space-time cube, to display the life path of people
from birth to death (Hagertrand, 1970). The space-time cube method is a
time-space concept that describes a cube with events’ geographical location
(along the x- and y-axis) and time (z-axis), illustrated in Figure 2. AT
denotes the neighborhood time step (the radius of the temporal influence
when calculating the Getis-Ord Gi* index of each bin). AS denotes the
neighborhood distance (the radius of the spatial influence when calculating
the Getis-Ord Gi* index of each bin). T denotes the time step interval of
each bin (the height of the square). S denotes the distance interval of each
bin (the length and width of the square). This model is often seen as the
beginning of time-geography studies and then was widely applied to under-
stand many events’ (earthquake, diesel emissions, et al.) movements
through time and space (Gatalsky et al., 2004; Cheng et al., 2020). With the
advanced computing power of computers and growing interest in spatio-
temporal modeling, the space-time cube method is revived now and its
improved version called the emerging hot spot analysis (Esri, 2016). This
approach can effectively discover the underlying spatiotemporal evolution
patterns of many geographical events.

In the emerging hot spot analysis, space-time cubes were constructed
firstly as the input, then the Getis-Ord Gi* index (Getis & Ord, 2010) and
the Mann-Kendall test (Mann, 1945) are used to detect spatially hot (or
cold) spots and time changing trends of these spots, respectively.
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Figure 2. Diagram of space-time cubes (key parameters of the space-time cube method were
illustrated, including time step intervals, distance intervals, neighborhood time steps, and neigh-
borhood distances).

The calculation formula of Getis-Ord Gi* index is as follows:
PRC A OB
G = = )
S\/n/(n ~ )T 0h = 1= 1) (S 00)

where G} denotes the Getis-Ord Gi* index, x; is the attribute value (crash
risk in this study) of the j-th bin in space-time cubes. w;; = 1, if the j-th
bin within the spatiotemporal neighborhood (including neighborhood time
step and neighborhood distance) of the i-th bin. w;; = 0, if the j-th bin is
out of the spatiotemporal neighborhood of the i-th bin. n represents the

1 n

total number of bins in the space-time cubes. X =1 j—1% and S =

\/% S x> — (X)* denotes the average and standard deviation crash risk
=17

of all the bins in the space-time cubes, respectively. The Getis-Ord Gi*
index is z-score, when the p-value has statistical significance (if z > 0), the
more intense clustering of the higher values (hot spot) will be. When the
p-value has statistical significance (if z < 0), the more intense clustering of
the lower values (cold spot) will be (Ye, Ma, & Ha, 2018).

The Mann-Kendall test is a non-parametric statistical test method that con-
ducts a rank correlation analysis for time-series of z-score at each location and
evaluates the time changing trend of hot and cold spots identified by the
Getis-Ord Gi* index. For the time series of z-score {x; : t = 1,2, ...,n}, the
test statistic S is given by (Kendall & Gibbons, 1990, Section. 1.9):
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n—1 n
S = aij (3)
i=1 j=it+1
I x<x;
aij = sign(xj — x;) = sign(R; — R;) = § 0 x; = Xx; @
—1 Xi>X;

where sign is a symbolic function. R; and R; are the ranks of observations
x; and x; of the time series, respectively. The standard statistic Zs can be
used for the statistical significance test. Its calculation formula is:

S—1
, $>0
D(S)
Zg = 0, S=0 (5)
S+1
D(S)’

When T > 10, the statistic S obeys the normal distribution approxi-
mately; its mean value is 0, and the variance D(S) = T(T — 1)(2T + 5)/18.
For a given confidence level p, if |Zs| > |Zs1_,/,|, the bin time-series has a
distinct upward or downward trend. If Zg > 0, it indicates an upward
trend, while Zg < 0, it indicates a downward trend (Cheng et al., 2020).

Finally, according to the results of the Getis-Ord Gi* index and the
Mann-Kendall test, seventeen spatial-temporal evolution patterns (new hot/
cold spots, consecutive hot/cold spots, intensifying hot/cold spots, persistent
hot/cold spots, diminishing hot/cold spots, sporadic hot/cold spots, oscillat-
ing hot/cold spots, historical hot/cold spots, no trend detected) can be
obtained (Esri, 2016).

3.3. Key parameters’ selection

In the space-time cube method, four key parameters, time step interval, dis-
tance interval, neighborhood time step and neighborhood distance play an
important role in detecting spatiotemporal hot spots and their evolution pat-
terns. If the time step interval and distance interval of the constructed space-
time cube is too large, the point pattern of original data may be lost while
the time step interval and distance interval is too small, an excess of empty
space-time cubes will be produced. To solve this problem, the Average
Nearest Neighbor may provide a rational reference to the proper distance
interval of space-time cubes. As for neighborhood time steps and neighbor-
hood distances in the emerging hot spot method, their selection mostly
depends on the results of control variable method because of the different
roadway structure factors affecting the spatial distribution of crash data.
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3.4. Latent class analysis

Latent Class Analysis (LCA), firstly proposed by Lazarsfeld and Henry
(1968), is widely used to identify subgroups within a large and heteroge-
neous population based on observed variables (Yu, Wang, & Abdel-Aty,
2017; Sun, Sun, & Shan, 2019; Li & Fan, 2019). It is a way to discover sub-
group heterogeneity and group subjects from multivariate data into “latent
classes.” The basic assumption of LCA is that the probability distribution
of various responses to observed variables can be explained by a few mutu-
ally exclusive latent class variables, and each latent class has a specific ten-
dency to respond to observed variables.

In this study, LCA was employed to find reasons caused high crash risk
in spots. The mathematical model of LCA is as follows

ne M ry
P(Y;i=yXi=x)=> v <x) LT 11 polt™=" (6)
I=1

m=1 k=1
_ Y — +) — exp(Bor + xPByr) _ exp(Bo; + xBy;)
v1(x) = P(Li = [|X; = x) 2 exp(By + By) 14+ 30 exp(By; + xBy)

™)
where vy;(x) is the latent class membership probabilities, p is the item-
response probabilities conditional on latent class membership, and f is the
logistic regression coefficients for covariates, which predicts class member-
ship. The LCA in this study was completed using a SAS procedure, and the
parameters are estimated by maximum likelihood using the expectation-
maximization procedure.

4. Results and discussion
4.1. Experiments of key parameters in the space-time cube

The Knox test was used to help understand the extent of spatiotemporal
interaction of the crash points. The testing distance is between 20 and 1000
meters, and the testing time period is 1day, 1week, 1 month, 3 months and
6 months. Results of Knox test show that the distance between 20 and 100
meters has significant spatiotemporal interaction and chi-square of Knox
increased with the increased time period and the decreased distance, which
means strong spatiotemporal interaction exists within small space distance
(e.g. 20 ~ 100 meters) and larger time period (e.g. 6 months). In addition, the
Average Nearest Neighbor method was performed to find the proper distance
interval of space-time cubes. The outcomes indicated that the observed mean
distance is 12.559 meters, the expected mean distance is 45.704 meters and
the ratio of nearest neighbor is 0.275. Therefore, the appropriate distance
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interval of space-time cubes is 20 meters, and the time step interval of space-
time cubes is 6 months in this study for its significantly clustered point pat-
tern at the spatial and temporal scale.

Next, the control variable method was applied to find the suitable neigh-
borhood time step and neighborhood distance to get spatial-temporal evo-
lution patterns as many as possible. The effect of different neighborhood
distance and neighborhood time steps in the space-time cube is further
investigated with the use of a set of values in the range [40,500] for the
neighborhood distance and varying neighborhood time steps from 6 to
42 months. Tables 1 and 2 showed the testing results of the space-time
cube with 20-meter distance interval and 6-month time step interval.

Table 1 showed the changes in spatial-temporal evolution patterns and
the ratio of evolution patterns when the neighborhood distance increased.
In the aspect of evolution pattern number and its ratio, the total number
and its ratio of detected evolution patterns decreased firstly increased then
with the rise of neighborhood distance in the space-time cube. This inter-
esting outcome indicates that a different neighborhood distance may
change the final evolution pattern distinctly because large neighborhood
may include another high crash risk location which leads to the forming of
cold spots according to the Getis-Ord Gi* index.

Table 2 illustrated that the increasing neighborhood time step and neighbor-
hood distance will lead to the changes in identified hotspot evolution patterns,
especially when the neighborhood distance larger than 60 meters. It indicates
that when the neighborhood distance and the neighborhood time steps are
large, the ratio of hotspot evolution patterns may be reduced. In this study, the
appropriate neighborhood distance and neighborhood time of space-time cubes
is 60 meters and 42 months (equals to 7 neighborhood time steps) as it can
produce stable hotspot evolution patterns and many time intervals can be taken
into consideration for detecting temporal trends in crash risk. However, the
final selection of key parameters in the space-time cube method should remain
to the decision of the researchers who take full consideration of data size and
study area., because crash data in another country or city may produce differ-
ent findings of spatiotemporal evolution patterns from this study.

4.2. Results of high-risk crash spots identification

High-risk crash spots in this study refer to the definition “space-time cubes
with high crash risk value”, which is the spatial-temporal unit with high
crash risk instead of traditional spatial location with high crash risk in pre-
vious literature (Briz-Redoén et al., 2019b). A total of 6,650 space-time cubes
with 1,077 non-empty ones were yield in this research. Results of the
cumulative frequency curve method illustrated that the critical high crash
risk value of three can be determined with its cumulative frequency
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Table 1. Spatiotemporal evolution results of different neighborhood distances.

Neighborhood Neighborhood time Spatial-temporal Ratio of evolution

distance (meters) step (month) evolution patterns patterns (%)

40 6 4 (New hot spot), 11 2.41%
(Sporadic hot spot)

60 6 10 (New hot spot), 9 2.86%
(Sporadic hot spot)

80 6 6 (New hot spot), 9 2.26%
(Sporadic hot spot)

100 6 6 (New hot spot) 0.90%

120 6 2 (New hot spot), 6 1.20%
(Sporadic hot spot)

140 6 2 (New hot spot), 7 1.35%
(Sporadic hot spot)

160 6 2 (New hot spot), 6 1.20%
(Sporadic hot spot)

180 6 2 (New hot spot), 1 1.35%

(Consecutive hot spot), 6
(Sporadic hot spot)

200 6 3 (New hot spot), 2 1.65%
(Consecutive hot spot), 6
(Sporadic hot spot)

220 6 4 (New hot spot,) 3 1.50%
(Consecutive hot spot), 3
(Sporadic hot spot)

240 6 3 (New hot spot), 4 1.80%
(Consecutive hot spot), 5
(Sporadic hot spot)

260 6 2 (New hot spot), 3 0.75%
(Sporadic hot spot)
280 6 1 (Sporadic hot spot) 0.15%
300 6 1 (New hot spot), 1 0.30%
(Sporadic hot spot)
320 6 N/S 0.00%
340 6 2 (New cold spot) 0.30%
360 6 4 (New cold spot) 0.60%
380 6 8 (New cold spot) 1.20%
400 6 8 (New cold spot) 1.20%
420 6 10 (New cold spot) 1.50%
440 6 11 (New cold spot) 1.65%
460 6 9 (New cold spot) 1.35%
500 6 13 (New cold spot) 1.95%

Note. N/S means there is no spatial-temporal pattern or trend detected.

exceeding 85%. When the crash risk of space-time cube increased by 8, the
cumulative frequency reaches 99.16%. At last, 415 space-time cubes with a
crash risk greater than 3 were identified as the high-risk crash spots in this
crash datasets.

Spatial distribution for high-risk crash spots, namely high-risk space-time
cubes, was obtained using Arc GIS data visualization tool. As shown in
Figure 3, locations with only one high crash risk spot take up a great pro-
portion (58.55%) and are scattered in many road types, such as intersec-
tions, interchanges, arterial roads, access roads and so on. There are 7
locations with 4 high-risk crash spots (1.69%), 4 locations with 5 high-risk
crash spots (0.96%), and 2 locations with 6 high-risk crash spots (0.48%).
Locations with more than four high-risk crash spots are usually located in
the upstream of the exit ramp gore point in interchanges, intersections,
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Table 2. Ratio of hotspot evolution patterns in different neighborhood time steps.
Neighborhood time steps (months)

Neighborhood

distance (meters) 6 12 18 24 30 36 42
40 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
60 100.00% 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
80 100.00% 100.00% 100.00% 100.00% 100.00% 97.44% 98.33%
100 100.00% 100.00% 100.00% 90.91% 100.00% 96.97% 96.30%
120 100.00% 100.00% 91.67% 73.33% 96.67% 97.44% 93.55%
140 100.00% 100.00% 73.33% 73.68% 89.74% 92.86% 93.44%
160 100.00% 71.43% 71.43% 48.00% 84.09% 88.64% 86.57%
180 100.00% 50.00% 38.46% 33.33% 63.49% 73.68% 81.01%
200 100.00% 45.45% 28.13% 29.73% 55.38% 72.13% 78.75%
220 100.00% 23.53% 26.19% 30.23% 54.29% 62.50% 74.68%
240 100.00% 6.90% 17.31% 20.41% 37.33% 56.41% 67.90%
260 100.00% 2.63% 9.38% 12.50% 25.33% 44.44% 52.81%
280 100.00% 1.96% 3.95% 9.86% 22.73% 32.38% 45.63%
300 100.00% 90.74% 74.12% 8.86% 19.10% 32.38% 46.79%

and entrance of neighborhoods, as these places are full of busy traffic
(motorized vehicles, non-motorized vehicles and pedestrian), and complex
traffic environments (Hou, Tarko, & Meng, 2018; Sun et al., 2019;
Mussone, Bassani, & Masci, 2017).

For example, Figure 3g shows one special place where there is an
entrance to a hospital. Based on the field observation of this area, there is
busy traffic (cars, pedestrian and electric bicycle) at the entrance of the
hospital during its opening hours, and traffic organization is quite complex
because of the parking lot and an exclusive lane for ambulances. Besides,
the intersection of local streets and arterial/sub-arterial roads also presents
high crash risks (Figure 3a andf) because of the densely populated neigh-
borhood and frequent vehicles (including cars, bicycles, motorcycles, and
electric bicycle) moving in and out.

The time distribution of high-risk crash spots also needed to be taken into
consideration. As can be seen from Table 3, the time period between 2015
and 2016 has the maximum number of high-risk crash spots. In the first half
of 2015, the average crash risk of space-time cube is the highest among all
the time step intervals, which is 3.810. The average and standard deviance of
crash risk in high-risk spots are almost stable, which means there is a lot of
work to do to further investigate reasons of high-risk crash spots and come
up with effective traffic safety improvement countermeasures.

More importantly, characteristics of identified high-risk crash spots can
provide us with more valuable information about why these space-time
cubes are inclined to high crash risk. In order to unearth the underlying
homogeneous clusters and common features of high-risk crash spots, the
LCA method was applied in this study, which is often used in recent stud-
ies (Yu et al,, 2017; Sun et al., 2019).

Considering human factors, vehicle factors, road factors, and environ-
mental factors, a total of twelve variables were selected to describe different
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Figure 3. Distribution map for high-risk crash spots (different colors indicate different numbers
of high-risk crash spots in the same location, gray lines indicate the roadway network).

characteristics of identified high-risk crash spots. To select the appropriate
number of latent clusters, different numbers of clusters were tested, from
one to twelve. The BIC, AIC, and CAIC criteria were used to select the
final number of clusters. BIC is proved to be more reliable than other
evaluation criteria, especially for large datasets (Sun et al., 2019; Li & Fan,
2019). The results of LCA show that the percentage decrease in BIC drops
to less than 1% (the percentage decrease in BIC is 0.05% in this study) in
the five clusters. Moreover, the quality of the clustering method was
assessed by the entropy R squared criterion (McLachlan & Peel, 2000). The
entropy value estimated for five clusters was 0.98, which suggests a clear
separation between the latent clusters identified by LCA.

Table 4 shows the results of the final set of featured variables that are used
for profiling the five classes. In class 1, 100.00% crashes happen on road seg-
ments and 68.87% on arterial roads, particularly pedestrians are injured in
the 53.77% crashes and the AADT of roads where 46.23% crashes happened
is between 16,000 and 25,000 pcu. Therefore, class 1 can be referred to as



14 (&) P.WUETAL

Table 3. Distribution of time step interval and crash risk statistics in high-risk crash spots.

Crash risk of high-risk spots

Number of high-risk

Time step interval crash spots Mean SD Minimum Maximum
2013-12-30-2014-06-29 38 3.263 1.270 3 7
2014-06-30-2014-12-29 43 3.700 1.286 3 10
2014-12-30-2015-06-29 42 3.810 1.287 3 7
2015-06-30-2015-12-29 47 3.550 1.268 3 10
2015-12-30-2016-06-29 47 3.600 1.286 3 9
2016-06-30-2016-12-29 44 3.360 1.293 3 8
2016-12-30-2017-06-29 37 3.220 1.281 3 9
2017-06-30-2017-12-29 43 3.510 1.281 3 12
2017-12-30-2018-06-29 35 3.430 1.281 3 10
2018-06-30-2018-12-29 39 3.360 1.279 3 6

“Crashes on arterial road segments and pedestrians get injured frequently.”
Cluster 2 resembles cluster 1 for road type, road class, and traffic volume, but
differs from injury type and crash form. 53.93% crashes are rear-ended colli-
sions and people in the car get injured in the 61.80% crashes in cluster 2. For
class 3, 98.96% crashes on expressway road segments with 77.08% rear-end
crashes, which can be seen as “Crashes on expressway road segments and
often rear-end collision.” Cluster 4 has 52.98% of the crashes happening on
intersections with AADT less than 7,000 pcu and the majority of crashes
belong to other crash forms. Cluster 4 can be regarded as “Crashes on inter-
sections with low traffic volume.” The last class overlaps class 4 on “road
type”, “road class” and “traffic volume”, but 52.14% crashes are other injury
types (e.g. PDO) and 60.68% crashes are rear-ended collisions. By conducting
the LCA method to analyze the reason of generating high crash risk locations,
we can find that five crash clustering need more attention from transportation
departments, and them can be considered as the main causes of high crash
risks in those spatiotemporal spots.

4.3. Spatiotemporal patterns of high-risk crash spots

As it has already been explained before, 6 months for time step interval, 20
meters for distance interval, 60 meters for neighborhood distance and
42 months for neighborhood time step were set in the emerging hot spot
method based on the existing data. Final spatiotemporal patterns of the
space-time cube method were shown in Figure 4, including 62 locations
with three spatiotemporal patterns identified (consecutive hot spot, persist-
ent hot spot, and sporadic hot spot).

By comparing Figure 3 with Figure 4, locations with major high-risk
crash spots are less likely to become the hot spots in spatiotemporal pat-
terns (see Figures 3e and 4g; Figures 3g and 4h). Besides, locations with
fewer high-risk crash spots can possibly turn into spatiotemporal pattern
hot spots (see Figures 3f and 4e; Figures 3h and 4a). Therefore, hot spots
as a result of spatiotemporal patterns are different from high-risk crash
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Table 4. Summary of variables and their distribution in each latent cluster of high-risk

crash spots.

Whole
database Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

Variables Description

Age of driver

Age-24 Young driver (age less than
24 years old)

Age 25-54 Middle-aged driver (age

between 25 to
54 years old)

Age-55 Old driver (age greater than
55 years old)

Gender

Male Driver is male

Female Driver is female

Injury type

|-Ped Pedestrian is injured in
the crash

I-Bicy People in the bicycle is
injured in the crash

I-E-bicy People in the electric bicycle
is injured in the crash

I-M-bicy People in the motorcycle is
injured in the crash

I-Car People in the car is injured in
the crash

Other-injury

Crash severity

PDO Property damage-only in
the crash

Injury Someone is injured in
the crash

Fatal Someone is dead in the crash

Vehicle type (at fault)

Car Car at fault in the crash

Bus Bus at fault in the crash

Van Van at fault in the crash

Heavy-veh Heavy vehicle at fault in
the crash

M-bicy Motorcycle at fault in
the crash

E-bicy Electric bicycle at fault in
the crash

Bicy Bicycle at fault in the crash
(not electricly powered)

Crash form

Side-coll Side collision

Rear-end Rear-end collision

Head-on Head-on collision

Fix-obj Fixed-object collision

Other-form

Road type

Road-seg Crash occurred in the
road segment

Intersection Crash occurred in the
intersection

Interchage Crash occurred in the
interchange

Other-road Crash occurred in parking lot,
walkway, et al.

Road class

Express-way Expressway

Arterial-road Arterial road

7.87% 8.49% 4.49% 6.25% 9.93% 8.55%

89.45% 89.62% 91.01% 91.67% 88.08%  88.03%

2.68% 1.89% 4.49% 2.08% 1.99% 3.42%

90.34% 90.57%  91.01% 89.58%  86.75%  94.87%

9.66% 9.43% 8.99% 1042%  13.25% 5.13%

23.97% 53.77% 0.00% 0.00%  49.67% 1.71%

7.51% 12.26% 1.12% 0.00%  17.88% 0.85%

11.27% 20.75% 0.00% 0.00%  27.15% 0.00%

0.18% 0.00% 0.00% 1.04% 0.00% 0.00%

30.59% 1038% 61.80%  45.83% 530%  45.30%

26.48% 2.83% 37.08%  53.13% 0.00%  52.14%

22.54% 0.00%  25.84%  45.83% 0.00%  50.43%

77.28% 99.06%  74.16%  54.17% 100.00%  49.57%

0.18% 0.94% 0.00% 0.00% 0.00% 0.00%
81.04% 70.75%  93.26% 84.38% 76.16%  84.62%
4.65% 5.66% 4.49% 6.25% 1.99% 5.98%
2.50% 0.94% 0.00% 4.17% 3.31% 3.42%
1.61% 0.00% 2.25% 3.13% 1.32% 1.71%
0.72% 1.89% 0.00% 1.04% 0.66% 0.00%

6.80% 16.04% 0.00% 0.00%  10.60% 4.27%
2.68% 4.72% 0.00% 1.04% 5.96% 0.00%
15.56% 0.94% 3933% 17.71% 2.65%  25.64%
34.53% 0.00%  53.93%  77.08% 0.00%  60.68%
1.07% 0.00% 1.12% 1.04% 0.66% 2.56%
3.76% 8.49% 4.49% 2.08% 1.99% 2.56%
45.08% 90.57% 1.12% 2.08%  94.70% 8.55%
61.18%  100.00% 100.00% 100.00%  32.45% 1.71%
24.51% 0.00% 0.00% 0.00%  52.98%  48.72%
10.55% 0.00% 0.00% 0.00% 2.65%  47.01%
3.76% 0.00% 0.00% 0.00%  11.92% 2.56%

22.90% 31.13% 0.00%  98.96% 0.00% 0.00%
26.30% 68.87%  83.15% 0.00% 0.00% 0.00%

(continued)



16 (&) P.WU ET AL,

Table 4. Continued.

Whole
Variables Description database Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5
Subarterial-road  Sub-arterial road 6.80% 0.00%  11.24% 0.00%  18.54% 0.00%
Access-road Access road 0.89% 0.00% 0.00% 0.00% 331% 0.00%
Local-street Local street in a community ~ 2.33% 0.00% 5.62% 0.00% 5.30% 0.00%
Other-class Including intersection, 40.79% 0.00% 0.00% 1.04% 72.85% 100.00%
interchange, parking lot
Weather
Clear Clear weather 84.79% 89.62%  79.78%  86.46% 84.11%  83.76%
Rainy Rainy weather 10.91% 849% 11.24% 1042% 11.26% 12.82%
Cloudy Cloudy weather 4.29% 1.89% 8.99% 3.13% 4.64% 3.42%
Daytime/nighttime
Daytime Crash occurred in the 77.82% 81.13% 76.40% 78.13% 81.46%  70.94%
daytime (6:00-20:00)
Nighttime Crash occurred in the 22.18% 18.87%  23.60% 21.88% 18.54%  29.06%

nighttime (20:00-6:00)

If rush-hour

In-rushhour Crash occurred in the rush 20.57% 19.81% 19.10%  15.63% 26.49%  18.80%
hours (7:30-9:30
& 17:30-19:30)

Not-rushhour Crash occurred not in the 79.43% 80.19%  80.90% 84.38% 73.51% 81.20%
rush hours

Traffic volume

Level_1 AADT less than 7000 pcu 41.50% 0.00% 16.85% 0.00% 97.35% 59.83%

Level_2 AADT between 7000 and 9.48% 32.08%  21.35% 0.00% 0.00% 0.00%
16000 pcu

Level_3 AADT between 16000 and 21.11% 46.23%  61.80% 6.25% 1.32% 5.13%
25000 pcu

Level_4 AADT between 25000 and 3.40% 5.66% 0.00%  11.46% 1.32% 0.00%
55000 pcu

Level_5 AADT larger than 55000 pcu  24.51% 16.04% 0.00%  82.29% 0.00%  35.04%

spots identified by the cumulative frequency curve method because Getis-
Ord Gi* statistics measure how intense clustering is by taking the neigh-
boring bins (bins within range of neighborhood time step and neighbor-
hood distance) into consideration. The majority of these patterns are
consecutive hot spots in this study, which means that there is a single
uninterrupted run of statistically significant hot spot bins in the final time-
step intervals and less than 90% of all bins are statistically significant hot
spots in the same location. In terms of persistent hot spot patterns, like
Figure 4a, b, and g, there are stable hot spot bins in at least 90% of time
step intervals without the tendency of increasing nor declining. And spor-
adic hot spot patterns (see Figure 4b and g) indicate that there are on-again
then off-again hot spot bins in the same location and can be regarded as
“hot spots appeared at odd time intervals.” Take one persistent hot spot
(see Figure 4b) for example, the trend z-score and trend p-value of crash
risk in this location are 0.716 and 0.474 respectively, which indicates a
trend in time but not significant measured by the Mann-Kendall method.
According to the above analysis of spatiotemporal pattern results, the tem-
poral instability of crash risk hot spots was revealed for there is no intensi-
tying hot spots pattern or diminishing hots spot pattern found in this
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Figure 4. Spatiotemporal patterns map for different locations (different colors indicate different
spatiotemporal patterns analyzed by the space-time cube method; gray lines indicate the road-
way network).

study, and the temporal instability of crash rate was also found in Hou,
Huo, and Leng (2020). Thus, spatiotemporal evolution patterns can help us
get more insights about spatiotemporal underlying features because it takes
full consideration of the dynamic time change trends of crash risk (e.g.,
consecutive, intensifying, persistent, diminishing, sporadic, oscillating).

5. Conclusions

Traftic safety analysis at the microzone-level has been of interest in recent
years, and the quick development of spatiotemporal data mining techniques
is bringing new chances and challenges for this subject. Specifically, in this
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study, a subdistrict in Shenzhen city in China has been used to analyze a
geocoded dataset of crashes during 2014-2018. In this regard, the identifica-
tion of high-risk crash spots at the space and time scale and the spatiotem-
poral evolution patterns of these spots have been discussed.

In the first place, the study of high-risk crash spots along the urban road
network is of great interest recently. Because crash risk taking full consider-
ation of crash frequency and crash severity simultaneously, it can help
transportation departments find more potential crash locations. However,
the majority of present researches about high-risk spots identification
focused on spatial distribution or temporal distribution separately instead
of the spatiotemporal aspect. In this study, the cumulative frequency curve
was employed to identify high-risk crash spots at the spatiotemporal scale
and the underlying reasons of these spots forming are further analyzed by
the LCA method. The results showed that pedestrian-injured crashes
mostly happen on arterial road segments and intersections, and PDO
crashes happen on expressways with the majority being rear-end collisions.

Next, the space-time cube method is a popular and emerging spatiotem-
poral data mining tool in other subjects, which may provide more insights
about crash datasets from the perspective of spatiotemporal features. In this
article, methods of selecting four key parameters in the space-time cube
method based on crash datasets were proposed using average nearest neigh-
bor and control variable method. They can be the reference methods for
choosing appropriate parameters of the space-time cube method to deeply
mining the spatiotemporal characteristics of crash data. The effect of differ-
ent parameters on final results was also explored in this study, which indi-
cates that spatiotemporal evolution patterns depend largely on
neighborhood time steps and neighborhood distances. Due to the sample
size of this study, more crash datasets can be examined by using the space-
time cube method in future researches.

Spatiotemporal evolution patterns of crash risk were insufficient in the
field of traffic safety. By analyzing spatiotemporal dynamic changing pat-
terns, the complex time and space changing patterns can be discovered
quickly and provide valuable information for traffic safety improvement
plans for local governments. For instance, field observation and safety
improvement should be emphasized on new, consecutive, intensifying and
persistent hotspots because these locations may turn into high-risk spots in
the future. In addition, the safety performance of different urban traffic
safety actions can be evaluated by studying the spatiotemporal patterns of
corresponding locations, such as the diminishing hot spots indicates the
declining time trend of crash risk in these locations.

By the research of this study, two important questions mentioned in the
introduction section were answered. Firstly, though grid structure seems to be
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improper for certain areas, such as traffic analysis zone or regional areas, it
indeed applicable at the microzone-level with small-size grid (20~ 100
meters), which perfectly divides complex road entity (e.g. interchanges) into
micro analysis zones, helping find hotspots microscopically. Secondly, the
actual performance of space-time cube method is a good option for traffic
safety analysis, and it can reveal the spatiotemporal closeness among crash
data and their dynamic spatiotemporal evolution patterns at the micro-level
which rarely studied before. In conclusion, the space-time cube method was
recommended to be a useful spatiotemporal data mining data technique in
the traffic safety field, hopefully helping us gain more knowledge of the com-
plex and dynamic spatiotemporal features of crash risk. However, the space-
time cube method also has its drawbacks, such as containing less distances of
roadways in each bin when the study road is not parallel to the edge of the
square. In order to avoid this problem, we recommend that crash rates (crash
number per meter) in each bin, and bins whether contain intersections
should be taken account of in the future study of the space-time cube
method. Besides, there is no evaluation criteria for us to compare traditional
methods (e.g., quality control method, EB/FB method, and kernel density esti-
mation) and the space-time cube method because their research objects are
different (the former ones identify spatial hotspots and the latter one identi-
fies spatiotemporal hotspots). Hence, the performance of the space-time cube
method and the spatiotemporal kernel density estimation (STKDE) method
to identify hotspots is needed to be further discussed in the future.
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